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ABSTRACT

Accurate intrinsic and extrinsic camera calibration can be an important prerequi-
site for robotic applications that rely on vision as input. While there is ongoing
research on enabling camera calibration using natural images, many systems in
practice still rely on using designated calibration targets with e. g. checkerboard
patterns or April tag grids. Once calibration images from different perspectives
have been acquired and feature descriptors detected, those are typically used in an
optimization process to minimize the geometric reprojection error. For this opti-
mization to converge, input images need to be of sufficient quality and particularly
sharpness; they should neither contain motion blur nor rolling-shutter artifacts that
can arise when the calibration board was not static during image capture. In this
work, we present a novel calibration image acquisition technique controlled via
voice commands recorded with a clip-on microphone, that can be more robust
and user-friendly than e. g. triggering capture with a remote control, or filtering
out blurry frames from a video sequence in postprocessing. To achieve this, we
use a state-of-the-art speech-to-text transcription model with accurate per-word
timestamping to capture trigger words with precise temporal alignment. Our ex-
periments show that the proposed method improves user experience by being fast
and efficient, allowing us to successfully calibrate complex multi-camera setups.

1 INTRODUCTION

Many applications in 2D and 3D perception for robotic systems rely on accurate camera calibration,
for instance methods for object detection [Liang et al., 2021; Guan et al., 2024], simultaneous local-
ization and mapping (SLAM) [Damjanović et al., 2025], or robotic manipulation [An et al., 2024].
One concrete example is the monocular 3D human pose estimation method MeTRAbs [Sárándi
et al., 2021], that we utilize on our mobile robotics platform (Figure 1) for human-robot interac-
tion tasks and human-aware navigation [Stefanini et al., 2024] in agile production and intralogistics
scenarios. The approach requires knowledge of the pinhole camera intrinsics as input in order to
perform absolute pose recovery. Likewise, its recently proposed extension to fisheye optics [Käs
et al., 2025] requires calibration with a fisheye camera model.
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Figure 1: Our use-case is the calibration of pinhole and fisheye cameras in robotics applications
using dedicated calibration targets (e. g. checkerboard patterns, April tag grids).

Figure 2: The proposed speech-guided image acquisition method can also be used to calibrate
complex multi-view systems, as in the example setup here with >10 cameras on tripods to obtain
groundtruth 3D human poses via multi-view triangulation.

Furthermore, to record training data e. g. for 3D human pose estimation approaches, complex multi-
view camera setups are typically used (Figure 2), often containing around a dozen cameras that are
spread out through the scene. In addition to the camera intrinsics, also extrinsics are required in this
case, in order to be able to triangulate accurate groundtruth 3D human poses.

The same applies when calibrating multiple cameras on a robot relative to each other, for example to
achieve 360-degree surround view coverage on an omnidirectional drive robot like ours, for down-
stream tasks such as multi-modal 3D object detection [Piekenbrinck et al., 2024], or multi-modal
human detection using cameras and lidar [Linder et al., 2021].

While ongoing research explores on how to perform calibration using in-the-wild images [Jin et al.,
2023], in our work we assume that a calibration target (April tag grid or checkerboard pattern) is
used for camera calibration, by placing it in different poses relative to the camera. Based upon our
extensive experience with calibrating the aforementioned multi-camera systems, using both open-
source [Schneider et al., 2014; Furgale et al., 2013] and commercially available [Wilm and Eiriksson,
2018] calibration software, we observe that it is crucial to acquire high-quality calibration images to
obtain good results. To achieve this goal, we propose a novel technique for speech-guided calibration
image acquisition, which allows the operator to securely hold the calibration target with both hands,
without requiring any additional support person during the calibration process.
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(a) Wired keyboard or
mouse as trigger

(b) Wireless remotes
e.g. Bluetooth presenter

(c) Automatic detection
of blurry frames/motion

Figure 3: Alternative approaches that we evaluated, with different shortcomings that make them
impractical when calibrating complex multi-camera systems spread out over larger areas.

2 METHOD

Problem definition The main challenge that we aim to address with our method is the elimination,
or reduction, of calibration images that exhibit motion blur and rolling shutter artifacts, which can
cause feature extraction and subsequently camera calibration to fail. In our experience, this issue
occurs frequently when recording continuous calibration video sequences while the operator is in
motion along with the calibration pattern, as illustrated in the example of Figure 3c.

We also observe that motion blur can become more severe under difficult lighting situations that are
often encountered in industrial factory and warehouse environments (Figure 1, right).

2.1 Alternative approaches

Before introducing the proposed method, we briefly review other related approaches that we have
experimented with, and that did not yield satisfactory results.

Adjusting acquisition parameters By reducing exposure time, increasing sensor gain, improving
lighting, or switching to a more light-sensitive camera/lens combination, the amount of motion blur
can be reduced. However, not all of these parameters are always under the user’s control. For
example, in our case, we are also interested in experimenting with very low-cost sensors and lenses,
that start to exhibit motion blur (or heavy pixel noise at high gain) already under benign lighting
conditions during daylight.

Wired triggering Using a wired keyboard or mouse as input (Figure 3a) requires the operator to
put the calibration target to rest, e. g. using a tripod, and then walk to the computer to press a key in
ordder to trigger image acquisition. As this process can be very time-consuming, it is not a practical
option in multi-camera setups that extend over a larger space, unless a second person assists with
the calibration effort, which increases operation cost.

Remote-controlled triggering During initial experiments with our multi-view capture setup, we
therefore tried out several remote-controlled, bluetooth-based triggers (e. g. a wireless presenter, see
Figure 3b). However, these proved to be unreliable at distances over 3-4m, or when the line-of-sight
to the receiver was obstructed by environmental structures or the calibration target. Also, triggering
delays sometimes appeared non-deterministic, reaching up to 2-3 seconds in some cases. In our
experiments, this often led to the situation that the operator had already started moving again, while
the image had not yet been recorded. Furthermore, the operator may need both hands to securely
hold the calibration target, thus hitting keys on a remote while not introducing additional motion
jitter can be an intricate endeavour.

Automated detection of low-quality calibration images Various metrics for detecting and quan-
tifying blurriness of images with (motion) blur artifacts (Figure 3c) have been proposed [Andrade,
2021], e. g. based upon variance of the Laplacian, other handcrafted metrics [Liu et al., 2008], or
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Figure 4: Flow diagram of the proposed approach. In our implementation, we use WhisperX [Bain
et al., 2023] as the speech transcription model, which provides highly accurate per-word timestamps.

deep neural networks [Kim et al., 2018]. The more general task is called blind image quality assess-
ment [Saha et al., 2023], if no groundtruth image is given. The challenge here is to find an approach
that generalizes well over different camera/lens combinations and scene compositions (foreground,
background objects), without having to adjust manually thresholds for every scene or frame.

Motion detection Finally, one could also attempt to curate images from a video where the calibra-
tion target is static, by detecting motion across a neighboring set of frames using a sliding-window
based technique, e. g. using optical flow [Alfarano et al., 2024]. However, this easily fails if there
are objects in the scene that naturally exhibit motion, e. g. ceiling fans, moving people in the back-
ground, or the constantly blinking LED strips that we use for intention communication on our robot.

2.2 Our proposed method

Overview We propose to utilize speech commands to trigger image acquisition whenever the op-
erator has positioned the calibration target in a new steady pose (for example by placing it on a
stand, chair, or a forklift in our case). We use a configurable trigger word like “Capture!” for this
purpose. By using speech as opposed to a remote control, the operator has both hands free to move
around or securely hold the calibration target. For full control over the image extraction process,
we record aligned, continuous video and audio sequences, and then extract candidate frames based
upon the speech prompts offline in post-processing. For multi-camera setups where also extrinsics
need to be computed, we ensure to perform image extraction in a synchronized fashion, based on
ROS message header timestamps.

Audio-video synchronization To align separately recorded audio from a clip-on microphone with
the video recordings from one or multiple cameras, the operator marks the beginning of a new cali-
bration sequence by clapping the hands, which is clearly discernible in both audio and video. While
we currently manually determine the claps timestamps, which is required only once per session, this
could also be automated using e. g. hand/body pose estimation and audio signal detection.

Detection of trigger words To detect and temporally localize the trigger words, we use a speech
transcription model based upon Whisper [Radford et al., 2023], a state-of-the-art general-purpose
speech recognition model trained using weak supervision on a large-scale multilingual audio dataset
(∼680,000 hours). As a multitasking model, it can perform speech recognition, speech translation,
and language identification, however, its per-word timestamps for longer audio sequences are not
very accurate, and in our experiments it was sometimes prone to hallucinations. Therefore, we
utilize the more recent WhisperX [Bain et al., 2023], which extends Whisper with accurate word-
level timestamping through forced phoneme alignment via wav2vec2 [Baevski et al., 2020] as well
as voice activity detection to reduce hallucinations, both of which proved to be very helpful in our
scenario. We use the mean of the start and end timestamps of the detected trigger word as timestamp
for image extraction.
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Figure 5: Our user interface shows an operator recording calibration images in a synchronized multi-
camera setup involving our robot platform (lower left). He prompts image acquisition during steady
poses via speech commands, while having his hands free to securely hold and move the calibration
target. The recognized trigger word is shown on the right in yellow.

Further processing As shown in Fig. 4, once the timestamps of all “Capture!” commands have
been determined using the proposed method, we extract the corresponding images and feed them into
a commercially available camera calibration suite [Wilm and Eiriksson, 2018], to obtain intrinsics
and extrinsics for our pinhole and fisheye cameras.

User interface To visualize the synchronized image frames from our multi-view camera setups,
along with the extracted trigger words, we have further implemented a graphical user interface using
OpenCV, shown in Figure 5, helping us verify the precise alignment of extracted trigger timestamps.

3 EXPERIMENTS

We now want to demonstrate that the proposed calibration image acquisition technique can be suc-
cessfully used to calibrate cameras on a robotic system.

Experimental setup For our experiments, we recorded calibration video sequences of around 5
minutes length using 4 Azure Kinect pinhole RGB cameras and one 5.1MP machine vision fish-
eye camera as ROS bagfiles. One Kinect and the fisheye camera were mounted on our robot and
connected to its internal PC, while three of the Kinects have been placed on tripods and connected
to an external computer that records also the audio from a low-cost clip-on microphone via a USB
radio receiver. Both computers’ clocks have been synchronized via network time protocol (NTP),
the clock of the machine vision camera is synchronized via precision time protocol (PTP). Around
50 speech prompts for image acquisition have been recorded per session and were stored as Ogg
Vorbis audio files. We use an April tag grid with 6 rows and 6 columns, printed on a 1x1 meter rigid
surface to which we attached handholds using aluminium profiles, as calibration target.

Camera models for calibration For calibration of pinhole images, we use the standard OpenCV
pinhole camera model with 3 radial and 2 tangential distortion coefficients. For calibration of fisheye
images, we use the Double-Sphere model by Usenko et al. [2018], which yielded robust calibration
results on 5 different models of fisheye lenses that we experimented with.
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Figure 6: Successfully converging calibration using an existing calibration software [Wilm and
Eiriksson, 2018] and motion blur-free calibration images extracted using our proposed approach.

Qualitative results To understand whether our method helps in obtaining high-quality calibration
images, we visually inspect the extracted image frames and manually assess them for their quality
(sharpness, lack of motion blur). Thanks to our proposed approach, no noticeable motion blur
has been observed in any image, as the operator consistently issued speech prompts while he was
standing still, such that the calibration target was resting in a stationary pose.

Quantitative evaluation We then use the extracted calibration images to perform actual calibra-
tions using existing commercial calibration software [Wilm and Eiriksson, 2018]. As visualized
exemplarily in Figure 6, the calibration using the images extracted via speech prompt quickly con-
verges. We obtain root mean square reprojection errors of on average <0.5 px, which can be con-
sidered a successful calibration result.

Video material Our supplementary video3 provides further examples and insights into our pro-
posed calibration image acquisition process. At the end, the video also includes a working demon-
stration of our user interface from Figure 5, showing trigger words and associated timestamps as
they are being extracted by the proposed approach.

Study on user satisfaction In a small user study, three different subjects that we interviewed
noted that the proposed method for calibration image acquisition is more convenient to use than 1)
a bluetooth-based trigger, 2) running back and forth between calibration board and PC to trigger
frame capture, 3) performing calibration on the entire video sequence. It is noteworthy that the latter
can take around 6 hours due to the lengthy feature detection process with such a large number of
frames and multiple cameras. Therefore, prior extraction of relevant key frames is essential, which
is greatly simplified by our proposed technique.

4 CONCLUSIONS

In this paper, we proposed a novel technique for acquisition of high-quality calibration images via
speech prompts. Our method allows the operator to securely hold the calibration target still with
both hands, without requiring any additional support person during the calibration process, making
the process robust, fast and efficient.

3https://www.youtube.com/watch?v=HFjTqGHMxIw
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Using the proposed technique, which leverages a state-of-the-art AI-based method for accurately
timestamped speech recognition, we have been easily able to calibrate multiple multi-camera setups.
The calibrated camera setups have been used to record novel datasets for our ongoing research. We
believe that our method and lessons learned can help robotics researchers to streamline their camera
calibration workflows.

In future work, we want to explore how we can utilize the proposed setup also for speech-guided
3D scene labelling tasks, where precise per-word timestamps are of equally high importance as
semantically accurate speech-to-text transcription quality, and powerful multi-task language models
such as WhisperX can demonstrate their full potential.
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